
Toward a Real-Time Waveguide Mesh Implementation

Tamara Smyth,1† Jennifer Hsu,2 Ryan Done1

1Department of Music, UC San Diego, La Jolla, California
†trsmyth@ucsd.edu

ABSTRACT

This work presents an analytic solution to a 2-D waveguide
mesh, made square with input and output at the center to
produce a symmetry that reduces redundancy and increases
computational savings. The result is a frequency-domain repre-
sentation of the mesh, a parametric transfer function describing
the ratio of output to input, symbolically computed to retain
parameters. In this form, the mesh, known for being com-
putationally prohibitive, can be further made to perform in
real-time, with (symbolic) parameters allowing for interaction
by the user. This work is motivated by a desire to explore
real-time interactive/parametric percussion synthesis.

1. INTRODUCTION

It is well known that one-dimensional (1-D) wave propagation
can be efficiently modeled using a 1-D digital waveguide, a bi-
directional delay line that models acoustic propagation delay
associated with waves travelling to the right and left along
one-dimensional systems such as strings and cylindrical (and
conical) bores found in musical instruments. This efficiency
is significant for virtual musical instrument design because it
allows these systems to be modeled parametrically for use in
real time, allowing the user to change parameter values while
hearing the (perceptually) immediate response.

The efficiency of the digital waveguide is lost when brought
to higher spatial dimensions. Though 2-D and 3-D waveguides
may be used to model wave propagation on membranes, plates,
and cavities [1], typical (time-domain) implementations are
computationally prohibitive for real-time performance. A 2001
paper [2] reports running a 6× 6 2-D mesh in real time on a
Pentium III 500 MHz (and 10×10 on a Athlon 1.3 GHz), with
more current tests (on an Intel core i5 2.2 GHz) supporting (but
struggling at) up to 45×45. Many musically interesting sounds
are produced with meshes far above 100×100 and [2] point out
that further research is clearly required to optimise the mesh
algorithm if it is to be more widely used. As a result, their
use in virtual musical instruments has been largely limited to
offline applications: analysis, non-interactive sound synthesis,
or modeling of components not expected to change in real time
(e.g. resonators such as soundboards or instrument bodies).
The lack of real-time low-latency interaction has made musical
exploration of these systems more difficult than their 1-D
counterpart. Here, an analytic solution of a simplified (made
to have computation-saving symmetry) 2-D waveguide mesh
(so called because of the interlaced nature of its time-domain
signal flow) is presented, providing an alternate, yet equal,
symbolic frequency-domain representation (a transfer function
that retains boundary loss parameters), that is intended for
parametric percussion synthesis.

2. THE WAVEGUIDE MESH

The 2-D mesh can be viewed as a matrix of junctions with
each junction Ji,j having 4 (north, south, east, and west) input-
output (I/O) ports, as indicated by the ‘+’ and ‘−’ super-
scripts, respectively (see Figure 1). In this work, the mesh is
constrained to be square (M ×M).

S+

Ji−1,j

Ji,j

Ji−1,j−1

Ji,j−1

Ji+1,jJi+1,j−1

Ji,j+1

Ji−1,j+1

Ji+1,j+1

...
a a

......
a

· · ·

· · ·

· · ·

a

a

· · · a

a· · ·

a· · ·

...
a a a

a

N−
z−1

z−1z−1

z−1

N+

E−

E+W−

W+

S−

Figure 1. Mesh junctions showing input/outputs on the north
N , south S, westW and eastE ports and a delay of one sample
(z−1) between port inputs and neighbouring port outputs.

The port inputs on junction Jm,n may be expressed as
a function of neighbouring port outputs with a delay of one
sample, with the exception of a mesh boundary where the
round-trip from output to input on a port introduces a 2-sample
delay and a multiply with boundary scalar reflection loss a:

N+
i,j(n) =

{
aN−i,j(n− 2), if i = 1 (north bndry);
S−i−1,j(n− 1) otherwise.

S+
i,j(n) =

{
aS−i,j(n− 2), if i = N (south bndry);
N−i+1,j(n− 1) otherwise.

E+
i,j(n) =

{
aE−i,j(n− 2), if j =M (east bndry);
W−i,j+1(n− 1), otherwise.

W+
i,j(n) =

{
aW−i,j(n− 2), for j = 1 (west bndry);
E−i,j−1(n− 1), otherwise.

(1)

Proceedings of the 2017 International Symposium on Musical Acoustics, 18–22 June, Montreal, Canada Peer Reviewed Paper

54

The output on each port at time sample n is given by the
junction’s total velocity (the wave variable used here),

vJi,j(n) =
N+
i,j(n) + S+

i,j(n) + E+
i,j(n) +W+

i,j(n)

2
, (2)

minus the port input which, when applying (2), yields:

N−i,j(n) = vJi,j(n)−N+
i,j(n)

=
−N+

i,j(n) + S+
i,j(n) + E+

i,j(n) +W+
i,j(n)

2

S−i,j(n) = vJi,j(n)− S+
i,j(n)

=
N+
i,j(n)− S+

i,j(n) + E+
i,j(n) +W+

i,j(n)

2

E−i,j(n) = vJi,j(n)− E+
i,j(n)

=
N+
i,j(n) + S+

i,j(n)− E+
i,j(n) +W+

i,j(n)

2

W−i,j(n) = vJi,j(n)−W+
i,j(n)

=
N+
i,j(n) + S+

i,j(n) + E+
i,j(n)−W+

i,j(n)

2
.

(3)

Substituting (1) into (3) yields final expressions (given here
in matrix form) for port outputs (column vector1 Ji,j) as a
function of neighbouring port outputs (column vector bi,j),
with the now dispensable ‘−’ superscript henceforth omitted:

Jni,j = Abni,j (4)

where

Jni,j = (Ni,j(n), Si,j(n), Ei,j(n),Wi,j(n)) , (5)

A =
1

2



−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 , (6)

and where the neighbouring port dependencies is given by

bni,j =



Si−1,j(n− 1)
Ni+1,j(n− 1)
Wi,j+1(n− 1)
Ei,j−1(n− 1))


 (7)

with exceptions as per boundary conditions in (1):

bn1,j(1) = aN1,j(n− 2) (north boundary)
bnM,j(2) = aSM,j(n− 2) (south boundary)
bni,M (3) = aEi,M (n− 2) (east boundary)
bni,1(4) = aWi,1(n− 2) (west boundary). (8)

2.1. Mesh Input and Output

The mesh may be “excited” at a location corresponding to
junction Ji,j using an input signal x(n) symmetrically dis-
tributed about the junction’s port inputs (or equivalently, the

1Notation whereby column vectors are notated with parentheses and com-
mas is adopted when compactness is necessary

neighbouring junction’s port outputs), such that the output
signal y(n) is the junction’s total velocity:

y(n) = vJi,j(n)

=
1

2

4∑

u=1

bni,j(u) + x(n)

=
1

2

4∑

u=1

(
bn(u) +

x(n)

2

)
, (9)

with boundaries according to (8). Equation (9) can be further
reduced if the I/O location is at the center,

y(n) = vJM+1
2 ,M+1

2
(n) for odd M,

=
1

2

(
4SM−1

2 ,M+1
2

(n− 1) + 4
x(n)

2

)
+ ...

= 2SM−1
2 ,M+1

2
(n− 1) + x(n), (10)

where, due to symmetry, the input on all ports is equal.

3. REDUCTION BY MESH SYMMETRY

Here, the input/output location is chosen to be the center of a
square M ×M mesh, for odd M , creating a symmetry and
redundancy that reduces computation (not taken advantage of
in a typical mesh implementation which performs the same
computation regardless of the I/O location). Of course, this
same symmetry that reduces computation also results in can-
celled modal resonances—the most reduced spectrum for a
given dimension.

When the mesh is excited at the center junction JM+1
2 ,M+1

2
,

this junction’s port outputs are equal in all directions,

NM+1
2 ,M+1

2
= SM+1

2 ,M+1
2

= EM+1
2 ,M+1

2
=WM+1

2 ,M+1
2
,

(11)
(with n being suppressed for compactness), creating a sym-
metry that is propagated outward to the mesh edges, and a
redundancy requiring computation of only half a quadrant of
the entire mesh (as indicated by shading in (12)),

J1,1 J1,2 . . . J1,M+1
2

. . . J1,M
J2,1 J2,2 . . . J2,M+1

2
. . . J2,M

J3,1 J3,2 . . . J3,M+1
2

. . . J3,M
...

...
. . .

...
. . .

...
JM+1

2 ,1 JM+1
2 ,2 . . . JM+1

2 ,M+1
2

. . . JM+1
2 ,M

...
...

. . .
...

. . .
...

JM,1 JM,2 . . . JM,M+1
2

. . . JM,M

(12)

a reduction from M2 junctions to

Nj =

M + 1

2

(
M + 1

2
+ 1

)

2
, for odd M. (13)

Proceedings of the 2017 International Symposium on Musical Acoustics, 18–22 June, Montreal, Canada Peer Reviewed Paper

55

3.1. New Boundary Conditions

Reducing the mesh to half a quadrant introduces new bound-
aries (points of symmetry) along the mesh’s first half of the

• center column (col) (J1,M+1
2

, J2,M+1
2

, . . . , JM+1
2 ,M+1

2
):

Wi,j+1(n− 1) = Ei,j−1(n− 1), for j =
M + 1

2
.

(14)

• quadrant diagonal (diag) (J1,1, J2,2, . . . , JM+1
2 ,M+1

2
):

Ni+1,j(n− 1) =Wi,j+1(n− 1)

Ei,j−1(n− 1) = Si−1,j(n− 1)

}
for i = j. (15)

Employing these symmetries (14-15) alone in a direct imple-
mentation of (4-8), (10)), and can significantly reduce mesh
computation times (see Table 1, column 3 vs. column 2).

4. OBTAINING THE TRANSFER FUNCTION

Taking the z-transform of (4) and rearranging elements (for
convenience in algorithm) yields

Jzi,j = Hzi,jb
′
zi,j , (16)

where for non boundaries

Jni,j = (Wi,j(z)Ni,j(z), Ei,j(z), Si,j(z)) , (17)

bzi,j = (Ei,j−1(z), Si−1,j(z),Wi,j+1(z), Ni+1,j(z)),
(18)

and

Hzi,j =
z−1

2



−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


 , (19)

and where boundary conditions are later applied following (8)
(see Section 4.1).

At this point, the mesh is represented as a system of equa-
tions for each junction (expressed as a function of neighbour-
ing junctions) which, when excited and tapped in the center,
yields an output as a function of the southern port output of
the center junction’s northern neighbour and the input (9), the
z-transform of which is given by

Y (z) = 2SM−1
2 ,M+1

2
(z)z−1 +X(z). (20)

What is needed to produce a transfer function however, is an
output solely as a function of the input,

H(z) =
Y (z)

X(z)
=
b0 + b1z

−1 + · · ·+ bNb
zNb

1 + a1z−1 + · · ·+ aNa
zNa

, (21)

or alternatively (and perhaps preferably) in factored form.
Thus, beginning with (16) and an initialization step, dependen-
cies of junctions on their neighbors is sequentially eliminated,
starting at the top row, and then working down the (triangular)
mesh.

4.1. Initialization

Elements in (16) can be initialized to values that, in the case of
boundaries, lead to reduced sizes for Jz, bz and Hz. Applying
boundaries (8, 14, 15), yields initial conditions

Ji,j =





E1,1(z), top left corner
NM+1

2 ,M+1
2

(z), bottom apex(
W (z), S(z)

)
1,M+1

2

, top right corner
(
N(z), E(z)

)
i,j
, diagonal (i = j)

(
W (z), E(z), S(z)

)
1,j
, top row

(
W (z), N(z), S(z)

)
i,M+1

2

, right column

(22)
and the corresponding bz vector with cases given respectively
(but with case statements removed for brevity):

bzi,j =





W1,2(z),(
SM−1

2 ,M+1
2

(z), X(z)
)
,(

E1,M−1
2

(z), N2,M+1
2

(z)
)
,(

Si−1,j(z), Wi,j+1(z)
)
,(

E1,j−1(z), W1,j+1(z), N2,j(z)
)
,(

Ei,M−1
2

(z), Si−1,M+1
2

(z), Ni+1,M+1
2 j(z)

)
,

(23)
and corresponding Hz matrix:

Hzi,j =





az−3, top right corner[
z−1 z−1

]
bottom apex

[
Hr Hb

2Hb Ha

]
, top right corner

[
0 z−1

z−1 0

]
, diagonal



Ha Hb Hb

Hb Ha Hb

Hb Hb Ha


 , top row




0
z−1

2

z−1

2

z−1 −z
−1

2

z−1

2

z−1
z−1

2
−z
−1

2



, right column

(24)
where

Hr =
az−3

2 + az−2
, Ha =

−z−1
2 + az−2

, Hb =
az−3 + z−1

2 + az−2
,

(25)

4.2. Dependency Elimination Algorithm

Eliminations are done by updating and operating on the depen-
dency matrix Hz. Vector bz is shown for reference only. First
steps are shown for illustration, but later supressed for brevity.

Proceedings of the 2017 International Symposium on Musical Acoustics, 18–22 June, Montreal, Canada Peer Reviewed Paper

56

4.2.1. Traverse first row from left to right:

eliminate E1,1 in bz1,2:

Jz1,2 = Hz1,2

(
��
�*

W1,2

E1,1, W1,3, N2,2

)

by multiplying the first column of Hz1,2 by the first row of
Hz1,1 and updating Hz1,2:

Hz1,2 →






H1,1

H2,1

H3,1


×

[
H1,1

]
1,1

H1,2 H1,3

H2,2 H2,3

H3,2 H3,3



1,2

eliminate W1,2 in bz1,2 (recursive)

J1,2 = Hz1,2

(
��
�W1,2, W1,3, N2,2

)
,

Hz1,2 →







1
H2,1

H3,1


×

[
H1,2 H1,3

]



1,2

/(1−
[
H1,1

]
1,2

)

+




0 0
H2,2 H2,3

H3,2 H3,3




1,2

(26)

eliminate E1,2 from bz1,3

J1,3 = Hz1,3

(
��
�*

W1,3

E1,2, W1,4, N2,3

)
,

Hz1,3 →






H1,1

H2,1

H3,1


×

[
H2,1 H2,2

]
1,2

H1,2 H1,3

H2,2 H2,3

H3,2 H3,3



1,3

eliminate W1,3 in bz1,3

J1,3 = Hz1,3

(
��
�*

N2,2

W1,3, W1,4, N2,3

)
, (27)

Hz1,3 →







1
H2,1

H3,1


×

[
H1,2 H1,3 H1,4

]



1,3

/
(
1−

[
H1,1

]
1,3

)
+




0 0 0
H2,2 H2,3 H2,4

H3,2 H3,3 H3,4




1,3

eliminate E1,j in J1,j+1 to row end;
eliminate W1,j+1 in J1,j+1 to row end;

4.2.2. Traverse first row from right to left:

eliminate W1,j from J1,j−1, for 3 <= j <= M+1
2 .

4.2.3. Traverse from first to second row

eliminate S1,j in J2,j , for 2 <= j <= M+1
2 .

4.2.4. Traverse second row from left to right

eliminate E2,j in J2,j+1 to row end;
eliminate W2,j+1 in J2,j+1 to row end;

4.2.5. Traverse second row from right to left

eliminate W2,j from J2,j−1 to row end;

4.2.6. Traverse second row from left to right

eliminate N2,j from J2,j , J2,j+1, for 2 <= j <= M+1
2

4.2.7. Traverse to next (and subsequent) rows and repeat

Once the bottom junction is reached, the transfer function
is given by the final expression in Hz M+1

2 ,M+1
2

for an unit-
impulse input.

MXM (order) full mesh symmetric mesh DF II
3× 3 (8) 2 ms 0.7 ms 0.6 ms
5× 5 (16) 6 ms 1.1 ms 1.0 ms
7× 7 (26) 13 ms 1.2 ms 1.5 ms
9× 9 (38) 22 ms 4.1 ms 2.0 ms
11× 11 (52) 34 ms 6.5 ms 2.9 ms

Table 1. Mesh computation times for the square M × M
mesh, mesh with applied symmetry, and direct form II imple-
mentation of transfer function with given order (and where
comparable timings are expected for a second-order section
cascade) for one second of 44100-Hz-audio).

5. CONCLUSION

Because of the computational limitations of the 2-D waveguide
mesh, it is not often used for real-time applications. This work
presents an initial step toward creating a frequency-domain
representation, with the eventual aim of developing a real-
time implementation. Though the current algorithm yields a
transfer function, which for low-orders can be implemented
in canonical form (direct form II), higher orders experience
coefficient quantization that perturbs the poles, often outside
the unit circle, and leading to instabilities. Furthermore, direct
form II would not be an ideal real-time implementation due to
known instabilities that arise when coefficients are made time
varying. It is thus desirable to obtaining the transfer function
in factored form so that alternate implements, such as a back
of second order sections, or a parametric impulse response,
can be used. This work is being developed in Mathematica,
a symbolic programming language, allowing for analysis of
symbolic (rather than numeric) results, less prone to precision
error. Table 1 shows current timing results.

REFERENCES

[1] S. V. Duyne and J. O. Smith, “The 2-d digital waveguide
mesh,” in Proceedings of the 1993 IEEE Workshop of
Applied Signal Processing to Audio and Acoustics. New
Paltz, New York: IEEE Press, October 1993.

[2] D. T. Murphy, C. J. C. Newton, and D. M. Howard,
“Digital waveguide mesh modelling of room acoustics:
Surround-sound, boundaries and plugin implementation,”
in Proceedings of the Conference on Digital Audio Effects
(DAFX-01), Limerick, Ireland, December 2001.

Proceedings of the 2017 International Symposium on Musical Acoustics, 18–22 June, Montreal, Canada Peer Reviewed Paper

57

