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ABSTRACT

Viscothermal losses are vital for realistic numerical models of
wind instruments. Numerical methods for modelling acoustic
tubes that include viscothermal losses are well understood in
the frequency domain for many years now. In this paper, moti-
vated by the aim to numerically investigate note transitions on
wind instruments, we study time-domain models for acoustic
tubes. Time-domain modelling is better suited to such non-
linear, as well as time-varying systems. Recent methods use
rational function approximation for including viscothermal
losses in the time domain. We pursue the same approach and
present a semi-analytic technique for the numerical integration
of losses. Finally, in an attempt to accurately reproduce exper-
imental findings, a time-domain bore optimisation routine is
presented that includes the effect of viscothermal and radiation
losses.

1. INTRODUCTION

Boundary layer losses need to be considered when modelling
wave propagation in acoustic ducts. Physical modelling ap-
proaches including viscothermal losses are mostly performed
in the frequency domain (see, e.g. [1, 2] or [3, Ch. 3.2.3]).
The results of such frequency-domain approximations have
been shown to be in good agreement with experimental mea-
surements [4]. Nevertheless, it is sometimes required to model
acoustic tubes in the time domain. This is particularly the
case when systems with time-varying properties, as well as
nonlinear systems need to be modelled [5].

In an attempt to simulate experimental arrangements for
the investigation of transient processes in woodwind instru-
ments (e.g. note transitions), it is therefore desirable to obtain
accurate time-domain wave propagation models that include
the effect of viscothermal losses. Recently, the use of rational
function approximation has been presented to this end [6, 7, 5].
In this work, following the same approach, we present a semi-
analytic technique for incorporating time-domain losses. The
resulting wave propagation model can be coupled to a nonlin-
ear excitation model that captures the interaction between the
player’s embouchure and the reed-mouthpiece system [8].

In order to accurately simulate experimental setups, a bore
optimisation process is presented that, given either the input
impedance or the impulse response of an acoustic tube, can
arrive at an effective bore shape that represents the tube used
in the experiment. Performing the optimisation in the time-
domain ensures that the time-domain formulation of losses is

consistent with subsequent attempts to model transient phe-
nomena. Section 3 describes how both viscothermal losses
as well as losses that occur at the open end of the tube due
to sound radiation may be included in such models. Even-
tually optimisation may be performed in order to estimate
model parameters (including bore geometry) based on time-
domain pressure signals. Hence physics-based analysis at-
tempts (see, e.g. [9]) may focus on characterising dynamic
player-instrument interactions that occur at the mouthpiece
during articulation.

2. MODELLING WAVE PROPAGATION IN TUBES

2.1. Frequency-domain model

We are considering a tube of length L and variable cross-
sectional area S = S(x), 0 ≤ x ≤ L. The propagation of
plane waves in tubular ducts, taking viscothermal losses into
account, can be modelled in the frequency domain by [5, 10]

∂xP + ZV = 0, (1a)
∂x(SV ) + Y SP = 0, (1b)

where P = P (ω, x) is the acoustic pressure and V = V (ω, x)
the particle velocity and ω denotes the frequency. The func-
tions Z = Z(ω, x) and Y = Y (ω, x) are called the specific
series impedance and the shunt addmitance, respectively. Spe-
cific formulas for Z and Y are given in [2].

To make the model complete, one has to impose boundary
conditions at x = 0 and x = L. The left boundary, x = 0, is
governed by a prescribed particle velocity V (ω, 0) = Vin(ω)
and the right, x = L, by a stipulated radiation impedance

Zr(ω) =
P (ω,L)

S(L)V (ω,L)
. (2)

2.2. Time-domain model

In order to transfer the model (1) to the time domain, Z and Y
can be split as [5]

Z = iωρ+ Zv, Y =
iω

ρc2
+ Yθ, (3)

where i denotes the imaginary unit, ρ the density of air and
c the speed of sound in air. Since the cross-sectional area S
does not depend on the time t, (1) transfers into

∂xp+ ρ∂tv + zv ∗ v = 0, (4a)

∂x(Sv) +
S

ρc2
∂tp+ Syθ ∗ p = 0, (4b)
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where ∗ denotes convolution with respect to the time variable
t, and lower case function names refer to the time-domain
versions of the capitalised functions. The boundary conditions
in the time domain are given by v(t, 0) = vin(t) at x = 0 and
(2) transfers for x = L to

p(t, L) = S(L)zr ∗ v(t, L). (5)

In addition to the boundary conditions, we assume that the
pressure p and the velocity v vanish for t < 0.

3. NUMERICAL SOLUTION OF THE
TIME-DOMAIN MODEL

3.1. Semi-analytic computation of the losses

In order to deal with the convolutions zv∗v and yθ∗pwe pursue
a similar approach as in [7] and approximate the functions Zv
and Yθ, given in (3), by rational functions ZKv and Y Kθ ,

ZKv = R0 +

K∑

k=1

Rkiω

Lk + iω
, Y Kθ =

K∑

k=1

Gkiω

Ck + iω
. (6)

One can show that for ω = 0, Yθ(0, x) = 0, so a constant
term in the approximation of Yθ is not needed. Rk, Lk, Gk
and Ck can be found by minimizing the differences Zv −
ZKv and Yθ − Y Kθ on a fixed set of frequencies by Newton’s
method [7]. Behold that the coefficients depend on the tube
radius and hence on the spatial variable x, but in order to
simplify notation, the x-dependency is not denoted. Hence,
we approximate

zv ∗ v ≈ R0v +

K∑

k=1

wk and yθ ∗ p ≈
K∑

k=1

qk (7)

where the frequency-domain versions of wk and qk are given
by the relations

Wk =
Rkiω

Lk + iω
V and Qk =

Gkiω

Ck + iω
P. (8)

For λ > 0 and H(t) denoting the Heaviside function, the
Fourier transform of H(t)e−λt is 1

λ+iω , therefore

wk(t) = Rk

t∫

0

e−Lk(t−τ)∂tv(τ)dτ, (9a)

qk(t) = Gk

t∫

0

e−Ck(t−τ)∂tp(τ)dτ. (9b)

3.2. Computation of the boundary conditions

The boundary condition at x = 0 is v(t, 0) = v0(t). At the
radiating end, we are using an approximation of Zr of the
form [3, Eq. (3.29b)]

Zr(ω) =
iωRr
Lr + iω

. (10)

The coefficientsRr and Lr depend on the radius and moreover
on the flange of the tube. For example, the boundary condition
discussed in [11, Eq. (9.9)] is of this form with Rr = ρ

S(L)α1

and Lr = α2

α1
. In our study, we are considering flanged tube

ends, hence the approximation (10) is accurate. When dealing
with experimental results, more refined versions [12] should
be considered, which will be optimised based on measured
signals. With this approximation, the boundary condition at
x = L is, because of (5), given by the differential equation

S(L)Rr∂tv(t, L) = Lrp(t, L) + ∂tp(t, L), (11)

which can be discretised by finite differences.

3.3. Finite Difference scheme

We substitute (7) into (4) in order to arrive at

∂xp+ ρ∂tv +R0v +

K∑

k=1

wk = 0, (12a)

∂x(Sv) +
S

ρc2
∂tp+ S

K∑

k=1

qk = 0. (12b)

We compute approximations pnm and vnm to the solutions p and
v of (12), respectively, at discrete points (tn, xm) in time and
space, where tn = n∆t, n = 0, 1, 2 . . . and xm = m∆x for
m = 0, . . . ,M and L = M∆x, for fixed ∆t and ∆x.

One iteratively computes pn+1
m and vn+1

m from results ob-
tained at previous time steps. In order to derive a discrete
version of (12), we need the following discretisations of (9),

wn+1
k,m ≈ e−Lk,m∆twnk,m +Rk,m(vn+1

m − vnm)e−Lk,m
∆t

2 ,
(13)

and

qn+1
k,m ≈ e−Ck,m∆tqnk,m +Gk,m(pn+1

m − pnm)e−Ck,m
∆t

2 .
(14)

The boundary condition on the left gives for vn+1
0

vn+1
0 = vn+1

in . (15)

Equation (12a) is discretised by finite differences and, using
(13), one can compute vn+1

m ,m = 1, . . . ,M from

pnm − pnm−1

∆x
+ ρ

vn+1
m − vnm

∆t
+R0,mv

n+1
m +

K∑

k=1

[
e−Lk,m∆twnk,m +Rk,m(vn+1

m − vnm)e−Lk,m
∆t

2

]
= 0.

(16)
Discretising (12b), and using (14), one computes pn+1

m , m =
0, . . . ,M − 1 from

Sm+1v
n+1
m+1 − Smvn+1

m

∆x
+
Sm
ρc2

pn+1
m − pnm

∆t
+

Sm

K∑

k=1

[
e−Ck,m∆tqnk,m +Gk,m(pn+1

m − pnm)e−Ck,m
∆t

2

]
= 0.

(17)
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Taking finite differences in (11) yields for m = M

SMRr
vn+1
M − vnM

∆t
= Lrp

n+1
M +

pn+1
M − pnM

∆t
, (18)

from which pn+1
M can be computed. Finally for k = 1, . . . ,K

and m = 1, . . . ,M , wn+1
k,m and qn+1

k,m are updated by (13) and
(14), respectively.

4. BORE RECONSTRUCTION

In this section we use the time-domain model and its numerical
implementation to estimate shape parameters of a tubular duct
using the input impedance,

Zin(ω) =
P (ω, 0)

S(0)V (ω, 0)
. (19)

Having solved the numerical scheme (15) - (18) for timesteps
tn = n∆t, n = 0, . . . , N − 1, we compute an approxima-
tion of the input impedance at frequencies ωk = k

N∆t
, k =

0, . . . , N − 1 with the fast Fourier transform (fft) by

Zin,num(ωk) =
{fftp0}k
S0{fftv0}k

, (20)

where p0 = {pn0}N−1
n=0 and v0 = {vn0 }N−1

n=0 . We assume
that the cross-sectional area S(x) depends on a set of pa-
rameters Π = {π1, . . . , πd}, hence S(x) = S(x,Π). Since
the function S appears in the models (1) and (4) as well
as in the numerical scheme (15) - (18), also the functions
P , V , p and v and the numerical approximations pmn and
vmn depend on the shape parameter set Π. Moreover, all
functions further depend on the length L of the tube. Of
course, this also holds for the computed input impedance,
hence Zin,num(ωk) = Zin,num(ωk,Π, L). Given a reference
impedance Zin,ref of a given bore, we want to estimate the
parameter set Π and the length L such that Zin,num is close to
the reference value at ωk, k = 0, . . . N∗ − 1. The numerically
computed input impedance is an approximation to the input
impedance only for k < N

2 and more accurate for low fre-
quencies, hence we only take ωk, k < N∗ into account for the
comparison, where N∗ < N

2 . To this end, we are minimizing
the function

f(Π, L) =

N∗−1∑

k=0

|Zin,ref(ωk)− Zin,num(ωk,Π, L)|2 (21)

with respect to the variables π1, . . . , πd and L. Starting from
initial values Π0 and L0, the Levenberg-Marquardt method
[13, Chapter 10] iteratively computes Πj and Lj , j = 1, 2, . . .,
which are approximations to a local minimum of f . The algo-
rithm stops as soon as the difference between two consecutive
approximations is smaller than a given tolerance. Conver-
gence to a local minimum requires a good starting point for
the iteration. In this case any cylindrical tube with a plausible
wind instrument radius proved sufficient for convergence to
the desired minimum1.

1Alternatively the Rosenbrock optimisation method [9] can be used that
may identify the global minimum of a search space.

5. NUMERICAL EXPERIMENTS

In our numerical experiments, we model an alto saxophone
mouthpiece adjuncted to a neck as a concatenation of a cylin-
der and a frustum of a cone. The mouthpiece itself is modeled
as a cylinder attached to a frustum, the neck as a single frustum
with the same aperture. The radial bore profile of a concatena-
tion of a cylinder and a cone is described by

r(x,Π) = π1 for 0 ≤ x ≤ π4 (22a)
r(x,Π) = (x− π4)π3 + π2 for π4 ≤ x. (22b)

The cross-sectional area is given by S(x) = r(x)2π. The
reference input impedance is simulated with ARTool [14],
using a frequency-domain plane wave model that includes
viscothermal losses [4]. The corresponding parameters of the
model (22), as well as the length of the tube, are given in the
last column of Table 1.

We are using the profile model (22) in a first experiment,
hence we want to estimate the parameters π1, . . . , π4 as well
as the length L. We start from the initial shape of a cylinder of
radius 5mm and length 230mm. After 61 steps, the Levenberg-
Marquardt method stops. Figure 1 shows the initial input
impedance and the initial bore profile, as well as the input
impedances and bore profiles of the reference and the result
after the parameter optimization. The results of the Levenberg-
Marquardt method are summarized in Table 1.
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Figure 1. Reconstruction of instrument length, radii, and
aperture of the cylinder-cone model (22).

Without prior information on the bore, one can model the
profile by a linear interpolation through the points (xl, πl),
l = 1, . . . , d for fixed 0 = x1 < x2 < . . . < xd. Therefore

r(x,Π) =
x− xl−1

xl − xl−1
(πl − πl−1) + πl−1 for xl−1 ≤ x < xl

(23a)

r(x,Π) =
x− xd−1

xd − xd−1
(πd − πd−1) + πd−1 for xd < x.

(23b)

In a second experiment we take 20 uniformely distributed
nodes, xl = l−1

19 220× 10−3, l = 1, . . . , 20. Again, as starting
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Initial (step 0) Final (step 61) Reference

L 230 mm 220.84 mm 220 mm

π1 5 mm 5.4329 mm 5.45 mm

π2 5 mm 5.9861 mm 6 mm

π3 0 0.029739 0.029778

π4 40 mm 34.566 mm 35.3 mm

Table 1. Summary of the reconstruction algorithm.

point we choose a cylinder of radius 5mm and length 230mm,
i.e. π0

l = 5 × 10−3 for l = 1, . . . , 20 and L0 = 230 × 10−3.
After 41 steps, the stopping criterion is satisfied. The initial,
the reference and the final input impedances as well as the
corresponding bore profiles are shown in Figure 2.
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Figure 2. Reconstruction of instrument length and radii of
linear interpolation model (23).

6. CONCLUSIONS

In this paper we study time-domain models for acoustic tubes,
introducing a semi-analytic variant for the computation of vis-
cothermal losses. It is demonstrated that impedances computed
by time-domain models are in good agreement with reference
impedances computed by plane wave frequency-domain mod-
els. Further, we describe an algorithm for the estimation of
bore shape parameters using a time-domain model. Fine tun-
ing the bore radius also updates the relevant parameters in
the terms that model viscothermal and radiation losses. Cur-
rent research focuses on performing the optimisation based
on time-domain pressure measurements in order to estimate
both the geometry of the instrument, as well as the parameters
related to the player-instrument interaction.
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