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ABSTRACT

We introduce an analysis-synthesis framework for simulation
of wind instrument input impedances as recursive digital filters
in parallel form, derived from measured data. For analysis, we
iteratively minimize the error between the frequency response
of a saxophone input impedance measurement and that of a
synthetic impedance model constructed from a digital filter
structure akin to the discretization of a modal expansion. The
input impedance model is used to derive a reflectance filter
and used for efficient sound synthesis via a reed model based
on non-linear scattering.

1. INTRODUCTION

As efficient sound synthesis schemes, most digital waveg-
uide models [1] of wind instruments approximate their air
columns as being cylindrical. In a typical digital waveguide
model, the air column of an ideal instrument constructed from
a cylindrical pipe and a bell can be represented by a pair of
delay lines simulating pressure wave propagation inside the
pipe, and a termination that includes two digital filters: one
that lumps frequency-dependent propagation losses and dis-
persion, and another one emulating the frequency-dependent
bell reflectance. In these efficient schemes, the reed-valve
end termination of the pipe is often modeled via a non-linear
scattering element that is interfaced to the air column model
through decomposed pressure traveling waves P+ and P−,
respectively going into and reflected back from the pipe input
interface. Approximations with conical elements are possible
but often result in inharmonic resonance structures that are
difficult to tune for sound synthesis.

To account for realistic, non-ideal instrument air column
shapes, one could treat the entire air column as a resonant load,
observe its linear behavior from frequency-domain experimen-
tal data, and design an air column load impedance filter model
Z(z) (i.e., an input impedance filter) for simulation so that the
reflected pressure wave P−(z) can be obtained from the inci-
dent wave P+(z) via P−(z) = R(z)P+(z), with R(z) being
a digital reflectance model derived from Z(z). In a previous
work [2], a frequency-domain measurement of an air column
input impedance is used to construct a discrete time reflection
function r[n] that is suitable for a traveling wave numerical
scheme based on convolution. Authors propose a method to
evade the time-aliasing and other numerical problems that nat-
urally arise from estimating r[n] via inverse Fourier transform
of a frequency-domain measurement signal.

The motivation of this work lies in avoiding the aforemen-
tioned problems by proposing a methodology for translating
input impedance measurements directly into recursive digital
filters of moderately low order, with the added advantage that
efficiency is improved with respect to discrete convolution.
We construct a digital model Z(z) of the air column input
impedance by means of recursive digital filters in parallel
form, so that a corresponding digital reflectance R(z) can be
connected to a reed-valve non-linear scattering model under
the traveling wave formulation. Although applicable to other
wind instruments, the design of such impedance filter is carried
out here by fitting its coefficients to a measured saxophone
input impedance obtained from experimental data.

Alto saxophone input impedances were measured using
a six-microphone probe, calibrated with three non-resonant
loads, via a least-mean square signal processing technique
as described in [3]. In Figure 1 we display the magnitude
of an alto saxophone input impedance measurement (grey
curve), obtained for a ’Bb3’ fingering, and normalized to the
characteristic wave impedance of the air column input. As the
resonance amplitudes decrease with frequency, the normalized
impedance tends to a value of 1, i.e., total transmission.

2. THE INPUT IMPEDANCE AS A
RECURSIVE PARALLEL FILTER

By attending to the resonance structure of input impedance
measurements, it appears clear that we can benefit from propos-
ing a digital filter formulation that is akin to the discretization
of a modal expansion. In fact, in a previous paper we addressed
a similar problem for the case of bridge input admittances in
string instruments [4]. Here we construct an input impedance
digital model Z(z) by creating a digital modal basis over
which impedance measurements are projected. Each m-th
impedance modal basis function Hm(z) is defined as

Hm(z) =
1− z−1

(1− pmz−1)(1− p∗mz−1)
, (1)

which corresponds to a two-pole resonator with one added zero
at DC. The resonator is defined by a pair of complex conjugate
poles pm and p∗m, which we relate to the corresponding modal
frequency fm and bandwidth βm by 2πfm/fs = ∠pm and
βm = − log|pm|/π, with fs being the sampling frequency in
Hertz. The impedance model Z(z) is formulated in parallel as

Z(z) =

M∑

m=1

(r0,m + r1,mz
−1)Hm(z), (2)
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where r0,m and r1,m are real-valued coefficients that allow
control of both the amplitude and the phase of the the m-th
resonator. The main reason behind the choice for our parallel
resonator structure is that, while enabling the control of the
relative phase between resonators, it imposes a gain of zero at
DC irrespective of the coefficients r0,m and r1,m.

3. IMPEDANCE FILTER DESIGN

Departing from a frequency-domain measurement of the tar-
get impedance Ẑ, the problem of designing the coefficients
of a recursive digital filter model (2) that approximates the
measurement can be stated as the minimization of an er-
ror measurement ε(Z, Ẑ) between the measurement and the
model, with parameters being a vector p = {p1, · · · , ωM}
of complex poles each corresponding the m-th resonator of
of the model, and vectors r0 = {r0,1, · · · , r0,M} and r1 =
{r1,1, · · · , r1,M} of respective numerator coefficients. We
solve this problem via sequential quadratic programming [5].
At each iteration only pole positions are exposed as the vari-
ables to optimize: once they are decided, zeros (i.e., numerator
coefficients) are constrained to minimize an auxiliary quadratic
cost function, resulting in a simple closed-form solution. The
positions of the poles are optimized iteratively: at each step,
an error function is successively evaluated by projecting the
target frequency response over a basis of frequency responses
defined by the pole positions under test. We add a set of linear
constraints to guarantee feasibilty and to ease convergence.
This optimization routine is devised as an extension to the
digital filter design technique proposed in [6].

3.1. Impedance measurement pre-processing

As it can be observed in the grey curves of Figure 1, the
high-frequency region of an impedance measurement tipycally
presents artifacts caused by noise and limitations of the mea-
surement method. It is important to remove those artifacts
so that the target normalized impedance effectively tends to
1 as frequency increases. This is needed to help the fitting
process in providing an impedance model design for which the
normalized impedance also tends to 1 in the high frequency
region; otherwise, a derived air column reflectance filter would
deliver reflected pressure waves with significant energy around
Nyquist, and therefore cause undersired behaviors in the reed-
valve non-linear scattering model. To this end, we perform
cross-fading between the normalized impedance measurement
and a constant value of 1, as illustrated in Figure 1, where we
display the magnitude response of a pre-processed measure-
ment.

3.2. Initialization and problem statement

We initialize the model parameters via finding a set of initial
pole positions by attending to the magnitude response of the
impedance measurement. First, resonance peak selection in
the low-frequency region is carried out through an automatic
procedure that iteratively rates and sorts spectral peaks by at-
tending to a salience descriptor. For estimating modal frequen-
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Figure 1. Magnitude response of an alto saxophone
impedance measurement (’Bb3’ fingering), normalized by
the characteristic impedance of the input of the air column.
Grey and blue curves are respectively used for raw and pre-
processed data. Top: full band, with cross-fading region de-
limited by vertical lines. Bottom: cross-fading region.

cies, three magnitude samples (respectively corresponding to
the corresponding maximum and its adjacent samples) are
used to perform parabolic interpolation around selected peaks.
For estimating bandwidths, the half-power rule [1] is applied
using a linear approximation. For the high-frequency region
we spread an additional set of poles, uniformly distributed on
a logarithmic frequency axis. This leads to a total M modes,
each expressed in terms of complex pole angles and radiae in
the z-plane.

We parametrize the initial set of M modes by represent-
ing each respective m-th complex pole pair in terms of its
angle parameter wm = |∠pm| and its radius parameter sm =
− log(1 − |pm|). This leads to two parameter sets: a set
w = {w1 · · ·wM} of angle parameter values, and a set s =
{s1 · · · sM} of radius parameter values. With the new parametri-
zation, we state the problem as

minimize
w,s

ε(Z, Ẑ)

subject to C,
(3)

where C is a set of linear constraints, and numerator coeffi-
cients have been left out as they are not exposed as variables
in the optimization.

A key step before contraint definition is to sort the pole
parameter sets so that linear constraints can be defined in a
straightforward manner to ensure that the arrangement of poles
in the unit disk is preserved during optimization, therefore re-
ducing the number of crossings over local minima. Elements
in sets w and s are jointly sorted as pairs (each pair corre-
sponding to a complex-conjugate pole) by ascending angle
parameter wm.
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3.3. Constraint definition

From ordered sets w and s, linear onstraints C are defined
as follows. First, feasibility is ensured by 0 ≤ sm and 0 ≤
wm ≤ π. Second, to aid convergence we constrain the pole
sequence order in set w to be respected. This is expressed by
wm−1 < wm < wm+1. Moreover, assuming that initialization
provides an already trusted first solution, we can bound the
search to a region around the initial pole positions. This can
be expressed via the additional inequalities w−m < wm < w+

m

and s−m < sm < s+m, where ’−’ and ’+’ superscripts are used
to respectively indicate lower and upper bounds.

3.4. Error computation

At each i-th step of the optimization, the error ε(Z, Ẑ) is mea-
sured as follows. Given K samples of the target impedance
frequency response Ẑ(ω) and the set p of M complex poles
defining the modes at the i-th step, numerator coefficient vec-
tors r0 and r1 can be obtained via least-squares by

minimize
r

‖Hr− ẑ‖2, (4)

where r = [ rT0 rT1 ]T is a real-valued vector; ẑ contains K
samples of the target frequency response at frequencies 0 ≤
ωk < π, i.e., ẑk = Ẑ(ωk); and H is aK×2M matrix of basis
vectors constructed as

H = [h0,1 · · · h0,m · · · h0,M h1,1 · · · h1,m · · · h1,M ]

with column vectors h0,m and h1,m containing the sampled
frequency responses of Hm(z) and z−1Hm(z) respectively.
With numerator coefficients, we evaluate the frequency re-
sponse of the model and compute the error measure as the
l2-norm of the difference vector, i.e., ε(Z, Ẑ) = ‖Hr− ẑ‖2.

3.5. Final solution

Once poles have been optimized, numerator coefficients of
model (2) are found by solving again problem (4). In Figure 2
we display the frequency response of an example impedance
model, obtained from a normalized saxophone impedance
measurement after cross-fading to a value of 1 above 8 kHz.
Although in principle the model (2) is not guaranteed to be
positive-real, fitting to measurements of positive-real functions
generally provides positive-real designs. This is important for
stability of the sound synthesis model because we need to
construct an air column reflectance model that is passive.

4. REALIZATION AS A
DIGITAL WAVEGUIDE REFLECTANCE

We treat the air column as a digital impedance load to which
we interface the reed model via a pair of decomposed traveling
waves. From the input impedance model (2), we construct a
reflectance that keeps the state of the air column as a resonating
element, and allows us to obtain reflected waves from its
interface. Following the digital waveguide formulation for
loaded parallel junctions [1], we can compute the scalar flow
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Figure 2. Frequency response of an example saxophone
impedance model (’Bb3’ fingering), normalized by the char-
acteristic impedance of the input of the air column. Grey and
blue curves respectively used for the pre-processed measure-
ment and the model (M = 35).

U(z) at the input of the air column solely from the input
pressure wave P+(z) as

U(z) =
2YcP

+(z)

1 + YcZ(z)
(5)

where Yc is the characteristic admittance of the input of the air
column, and Z(z) is the digital impedance model. From the
flow U(z), it should be straightforward to compute the scalar
pressure P (z) at the input of the air column via

P (z) = Z(z)U(z). (6)

Finally, from the air column pressure P (z) it is possible to
obtain the (reflected) outgoing pressure wave P−(z) by means
of

P−(z) = P (z)− P+(z). (7)

Because the formulation of the impedance model (2) pre-
sents a parallel structure that we want to maintain, inverting
Z(z) as it appears in equation (5) is impractical. To overcome
this problem in the realization of the reflectance, we reformu-
late the impedance in a similar fashion as we proposed in [4]
for the admittance of a string instruments. First, we rewrite
each resonator Hm(z) of equation (2) as

Hm(z) = 1 + z−1Hp
m(z), (8)

with

Hp
m(z) =

c0,m + c1,mz
−1

1 + a1,mz−1 + a2,mz−2
, (9)

c0,m = −1−a1,m, and c1,m = −a2,m. Note that denominator
coefficients are related to pole radius and angle by a1,m =
−2|pm| cos(∠pm) and a2,m = |pm|2. We now rewrite the
impedance model as

Z(z) = B0 + z−1B1 + z−1H0(z) + z−2H1(z), (10)
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with

B0 =

M∑

m=1

c0,m, B1 =

M∑

m=1

c1,m, (11)

H0(z) =

M∑

m=1

c0,mH
p
m(z), H1(z) =

M∑

m=1

c1,mH
p
m(z). (12)

With this new formulation, we rewrite (5) and (6) as

U(z) =
2YcP

+(z)− z−1Yc
(
B1 +H0(z) + z−1H1(z)

)
U(z)

1 + YcB0
(13)

and

P (z) = B0U(z) + z−1
(
B1 +H0(z) + z−1H1(z)

)
U(z).

(14)
It is important to point out that now the parallel structure
appears in the numerator terms H0(z) and H1(z), making
possible its implementation. Moreover, H0(z) and H1(z) can
be jointly implemented as a sole bank of parallel resonators.
Finally, it is worth mentioning that the term z−1

(
B1+H0(z)+

z−1H1(z)
)
U(z) appears in equations (13) and (14) but does

not need to be implemented twice–once it has been computed
to obtain U(z) via equation (13), it can be reused to compute
P (z) via equation (14).

5. SOUND SYNTHESIS

We construct an efficient sound synthesis scheme by interfac-
ing our air column reflectance model and a modified version
of the reed scattering model used in [7] as follows. At each
iteration, two main computations are interleaved: the reed scat-
tering update and the air column reflectance update. During
the reed scattering update, the differential pressure driving
both the reed motion and the reed channel flow relation (see
[7]) is first computed as the difference between the mouth pres-
sure and the value of the scalar air column pressure obtained
in the previous reflectance update (see Section 4). Then, the
pressure wave obtained from the reed scattering is used to feed
the next reflectance update. In Figure 3 we display the reed
channel flow (see [7]) and the scalar air column pressure P of
a synthesis example obtained from an alto saxophone ’Bb3’
fingering model, driven by a piecewise linear mouth pressure
signal. It can be observed how, during the initial transient, the
model first jumps to an upper octave and then transitions to its
nominal regime. This model runs about 40 times faster than
real-time in one core of a current laptop computer.

6. OUTLOOK

Albeit still preliminary, results shed light on a promising route
for efficient, yet realistic sound synthesis with potential appli-
cations both in rendering music and in analysing the timbre
and playability of real air column prototypes. Among our
planned future steps are a more complete exploration with
impedances over the full range of notes and of different wind
instruments, the development of strategies for transitioning be-
tween fingerings, and the modeling of measured radiativities.
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Figure 3. Synthesis example for an alto saxophone ’Bb3’
fingering model, driven by a piecewise linear mouth pressure
signal. Orange and blue curves respectively used for reed
channel flow and air column pressure. Top: initial upper-
octave transient. Bottow: detail of the transition towards the
nominal regime.
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