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ABSTRACT

This paper outlines a project to couple a woodwind physi-
cal model that incorporates a continuously variable tonehole
model [1, 2] with a new experimental electronic wind con-
troller called the Birl, and to develop an algorithm to automati-
cally adjust the parameters of the model based on the desired
tuning of the final instrument.

1. INTRODUCTION

The Birl project [3, 4, 5] led by Jeff Snyder, attempts to create
an expressive electronic wind instrument that allows continu-
ously variable tonehole control and more complex embouchure
detection than that available on existing commercial wind con-
trollers. This particular contribution to the Birl project focuses
on implementing a digital waveguide physical model [6] as a
strategy for mapping the continuous tonehole control to sound.

Toneholes, especially in open-holed acoustic wind instru-
ments such as the bansuri, shanai, or recorder, provide a wide
range of sonic possibilities through the variety of ways that
a performer can interact with them. Completely covering a
tonehole effectively increases the length of the instrument
bore, dropping the pitch to a lower frequency, while opening
a tonehole does the opposite. Partially covering it results in
interpolation between these two pitch boundaries. A combina-
tion of higher breath pressure and certain coverage values can
produce unusual acoustic effects such as multiphonics, which
create the perception of multiple pitches sounding at once.
Different fingerings that produce the same pitch may never-
theless produce varying timbres, allowing for the use of an
effect called a ”timbral trill”, in which the performer switches
quickly between two fingerings to create an oscillation in tone
color. These techniques are all possible due to the physical
characteristics of the tube and the unique way that air pressure
waves blown into it interact with the bore cavity, and how the
toneholes dynamically alter these properties. However, much
of this flexibility is lost in current commercially available elec-
tronic wind instruments such as the Akai EWI or the Yamaha
WX series, which have only binary inputs for the toneholes
(open or closed state). These instruments output a MIDI pitch
value based on the combination of open or closed keys, which
simplifies their communication with synthesis engines.

If one desires to take variations in continuous toneholes
into account, then this mapping from the state of the toneholes
to the synthesis becomes more complex. There have been
some projects by other authors that involved the creation of

electronic wind instruments with continously variable tone-
holes, most notably the PIPE, by Scavone [7], and the Epipe,
by Hughes, Cannon and Modhrin [8]. In the case of the Birl,
several mapping strategies have been attempted, including
rule-based methods, and using trained neural networks to cre-
ate interpolated states between particular finger positions and
a desired pitch output [4]. This paper details our experiment in
using physical modelling synthesis to achieve useful mapping
of continuous tonehole parameters to sound. Compared to
the neural net or rule-based approaches, this solution comes
with many limitations in the possibilities of pitch mappings,
as it is limited to creating a model that is similar to a physical
instrument with a limited number of toneholes in particular
locations. Despite these limitations, a physical modelling ap-
proach allows for very interesting and acoustically-inspired
sonic results, and very intuitive performance possibilities, as
mentioned in an early paper describing the addition of tone-
hole models to digital waveguides [9]. For instance, we were
particularly interested in allowing the execution on a digital
woodwind instrument of extended acoustic wind instrument
techniques such as half-holing, cross-fingering, overblowing,
and multiphonics.

One downside inherent in a physical modelling approach
that uses a more complex model with multiple toneholes, when
compared to a simpler model that simply adjusts the length
of a single tube, is the difficulty of setting the parameters of
the model to achieve the desired tuning results for the pitches
produced when the toneholes are closed and opened. There-
fore, another goal of this project was the development of an
algorithm to simplify the procedure of setting these parame-
ters so that a musician could define any arbitrary musical scale
and a model would be calculated to achieve that result. The
goal is an electronic instrument that retains many interesting
performance capabilities of acoustic instruments, but is not
subject to the same physical constraints.

2. IMPLEMENTATION

2.1. Physical Model

The implementation of the Birl physical model is based on the
BlowHole STK (Synthesis Toolkit) class [10], which is a single
tonehole implementation of a digital waveguide algorithm
with woodwind-like components. The reed table, tonehole
filter, and termination reflection filter are drawn directly from
BlowHole. The tonehole model was set up as a pole-zero
filter, and the equations relating the filter coefficients and the
tonehole radius were implemented as part of the tonehole
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initialization according to [1, 2]. Furthermore, a three-port
scattering junction as in [2] was also in place.

For the body, BlowHole uses an optimized single delay
line (SDL) implementation, but we found it easier to conceive
the model as a bidirectional waveguide so we converted it.
Information on converting between SDL and bidirectional
waveguide models can be found in [11]. Then, we removed
the register vent for simplicity and extended the model to
include 11 toneholes, to match the number of tonehole sensors
on the Birl controller.

A design decision was made to use only integer-length
delay lines and to correct for the resulting rounding error by
adjusting the diameter of the next tonehole. This was done
both to avoid signal distortion and for performance benefits.
Fractional delays involve interpolation functions to yield an ap-
proximation of a continuous input signal. Even with complex
interpolation functions, a small amount of signal distortion is
inevitable. Interpolation also invariably incurs more compu-
tational overhead. These two factors are insignificant for a
small number of delays, but in a model that comprises a series
of delays feeding into each other like the Birl, distortion and
computational work accumulate rapidly.

Figure 1. A basic schematic for the digital waveguide synthe-
sis used in the Birl physical model [12].

Figure 2. Three-port scattering junction. [2]

2.2. Tuning Algorithm

In order to allow the user to specify arbitrary tunings for the
instrument, an algorithm was implemented that relates the
desired tuning or scale to the delay line lengths and tonehole
radii. A system of equations is given in [13] that determine
the parameters of a delay line tube section and tonehole filter
that must be appended to the model in order to produce each
desired pitch.

The Birl model is a closed-open tube, so its output fre-
quency is related to the tube length according to

F1 =
c

4L
(1)

where L is the effective tube length, F1 is the fundamental
frequency, and c is the speed of sound. Since air pressure
waves actually travel a small distance beyond the open end
of a tube, the discrepancy between the effective length and
the cut (actual) length of the tube must be calculated. This
difference is the end correction of the tube (∆lT ).

In a closed-closed tube ∆lT = 0, since the pressure waves
reflect exactly at the ends of the tube. A closed-open tube of
cut length lT will produce a fundamental frequency equal to
that produced by a closed-closed tube of the corresponding ef-
fective length LS , so LS = lT + ∆lT . The following equation
is used as an estimate of ∆lT :

∆lT = 0.3d1 (2)

where d1 is the bore diameter.
The same principles apply to toneholes as well. The length

from the mouthpiece end of the tube to the center of any given
tonehole i is equal to the effective length of the tube when all
toneholes before tonehole i are closed. This per tonehole cut
length is labeled lH , and the corresponding effective length
LS(h). Their relationship is

∆lH = zLS(h) (3)

z = 0.5g

√
1 + 4

LB(h)

gLS
− 0.5g (4)

LB(h) = (lH + dH)(
d1
dH

)2 − 0.45d1 (5)

dH refers to the tonehole diameter, and LB(h) is a variable
that does not have a physical manifestation, but refers to “the
length of a fictitious duct that has the same diameter as the
main tube, and the same conductivity as the tonehole” [13].
g is the interval ratio between the current tonehole and the
previous one (closer to the mouthpiece).

To solve for the position and radius of a tonehole, (3), (4),
and (5) must be combined with (1) to find suitable values for
lH and dH . LS(h) can be determined from the desired pitch
using (1). Then, a reasonable starting value must be chosen
for either dH or lH which can be used to solve (3).
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Algebraic manipulation of (3), (4), and (5) yields:

LB(h) =
(L(h) + 0.5gLS(h) − lL)2

gLS
− gLS

4
(6)

dH =
d21

LB(h) + 0.45d1
(7)

The general algorithm for tuning the model at a tonehole po-
sition given a desired frequency for that tonehole is outlined
here. Note that this algorithm must be run iteratively for each
tonehole in the model.

1. Calculate the effective length LS(h) for this tonehole.

2. Calculate the interval ratio g by dividing two ratios. The
numerator is the ratio of the current tonehole pitch to
the fundamental, and the denominator is the ratio of the
previous tonehole pitch to the fundamental.

3. Start with a reasonable diameter value dH that is above a
minimum threshold. Compute LB(h) using equation (6).

4. Solve for z using equation (4).

5. Compute lH using lH = LS(h) − zLS(h). Round down
to the nearest integer.

6. If lH is the same length as a previous delay line, then
increase oversampling rate and restart algorithm for
entire model.

7. Compute dH using equation (7). If dH is too small,
decrement lH by 1 and repeat steps 4-5.

Tuning the fundamental is simpler as LB(h) is not involved.
The integer tube length can be calculated directly from LS =
lT + ∆lT and (2).

The inclusion of minimum threshold values for d1 and dH
is the result of observing detuning effects that occur when
tonehole diameter values are too small. Intuitively, small radii
may reflect an air pressure wave entirely. In the digital domain,
this translates to the filter’s coefficient values reflecting the
signal completely, eliminating the effect of the filter. The
exact minimum threshold at which unwanted detuning begins
to occur is unknown, but values of 1.0 (in sample lengths) for
both variables were deemed adequately effective in the Birl
model.

Step 6 uses oversampling to work around the problem of
delay line length clashes. If the user specifies two frequencies
that are close enough together such that their corresponding
wavelengths are within 1 sample length of each other, the
tuning algorithm will return the same delay line length for
both. Oversampling increases the granularity of the model so
that the difference threshold at which this problem occurs is
divided by the oversampling rate.

3. EVALUATION

3.1. Physical Model Evaluation

A formal user study of this research has not been conducted.
However, as part of the evaluation process, a professional saxo-
phonist was invited to informally explore the Birl while it was

connected to the physical model. He noted that half-holing
and cross-fingering felt natural, and multiphonics generally
felt similar to the way that they are achieved in a saxophone,
by using a “somewhat unpredictable embouchure/air stream”
in conjunction with certain cross-fingerings. He was also able
to achieve overblowing, but this was not realistic enough to
perform on-demand. In acoustic wind instruments, overblow-
ing occurs when the player blows firmly into the mouthpiece,
but in the Birl a particular fingering configuration was also
needed. Overall, the acoustics felt “very authentic.” However,
he also mentioned that the instrument felt “ a little too sensi-
tive” and that it was hard to know when the model would start
squeaking. The biggest area of improvement he suggested was
in providing the user with more control over the sound output
by the model. Recordings of the model producing these effects
can be found on this project’s online git repository [14].

3.2. Tuning Algorithm Evaluation

While the tuning algorithm produced scales that sounded close
to the intended results, there remain several problems. The
most obvious defect of the current Birl model is an absolute
pitch offset that is unsolved at the time of writing. When
tuning the fundamental, the result is invariably sharp of the ex-
pected pitch. One possible explanation is equation (2). Forster
acknowledges that this is not exact, but rather a “good esti-
mation” for the relationship between d1 and ∆lT , and “an
exact equation for the end correction of open and closed tubes
does not exist because the end correction depends slightly on
wavelength” [13].

Relative tuning is also inaccurate, although less so: tone-
holes closer to the open end of the bore (lower-pitched) tend to
be sharper. We have discovered that two bores with equivalent
length, one with a closed tonehole and one simply contiguous,
will not produce the same pitch. The addition of the tonehole
filter slightly increases the output pitch. The compounding
of this error may be the cause of the relative tuning error for
toneholes further down the bore.

Another flaw in the current model is that oversampling
rates above 2X result in high-frequency artifacts. Therefore
step 6 in the tuning algorithm in Section 2.2 will only work
once. The exact cause of this issue is unknown at time of
writing, but we are exploring the possibility that the tonehole
model needs to be adjusted for higher sampling rates beyond
simply using the higher sample rate in coefficient calculation.

4. CONCLUSION AND FURTHER WORK

The Birl physical model is a proof-of-concept that certain
unique acoustic properties of woodwinds can be achieved by
using a digital waveguide with continuously variable toneholes
coupled with a controller that allows for continuous tonehole
control. However, its current drawbacks prevent it from being
ready for a performance setting. The source of the global
and relative tuning errors in the tuning algorithm, as well as
the oversampling issues, need to be determined and resolved
before the instrument is ready for performance. We also need
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Specified
Pitch (Hz)

Output Pitch
(Hz)

Absolute Er-
ror (cents)

Relative
Error (cents)

440.00 462.20 85.22 21.95

493.88 513.90 68.79 5.52

554.37 578.10 72.56 9.29

587.33 612.90 73.78 10.51

659.25 687.05 71.51 8.24

739.99 765.70 59.13 -4.14

830.61 858.50 57.18 -6.09

880.00 916.50 70.36 7.09

987.77 1019.20 54.23 -9.04

1108.73 1150.00 63.27 0.00

Table 1. Absolute and relative tuning error between one set of
desired input frequencies and the actual frequencies produced
by a model with parameters calculated by the tuning algorithm.
The relative error is calculated in reference to the highest pitch,
as that tonehole has the least amount of toneholes in front of
it, and so should have the least error.

to build into the model an effective way for the performer to
control overblowing.

One approach we are currently exploring as a solution
to the tuning error is the use of pitch-detection within the
tuning algorithm. During initialization, the error between
the actual and desired pitch output can be used to inform a
searching mechanism that would adjust the tonehole radius
until the desired pitch is reached. We are currently working
on incorporating the YIN pitch detection algorithm [15] as
an additional step in the tuning algorithm to adjust for the
discrepancies.

We also have plans to further extend the Birl physical
model. For example, a register vent could be added to allow
for octave jumps (one already exists in the STK BlowHole).
This would follow the specification of a two-port scattering
junction as outlined in [1]. Other extensions such as tonehole
chimneys and non-constant bore diameter or curvature could
be added to implement models of more complex instruments.

Work on the Birl is ongoing, and the results so far of this
physical model implementation are encouraging. We also hope
that others will find our repository of code useful for their own
explorations.
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