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ABSTRACT

Research on timbre has produced a lot of work over the last 50
years, whether on analysis of single tone, instrument timbre,
synthetic timbre, or perception and emotion. However, there
is still a lot to investigate for polyphonic timbre. This aspect is
perhaps one of the biggest challenges in the field of computer-
aided orchestration. This paper reports on the development of
a system capable of automatically identify perceptual qualities
of timbre within orchestral sounds. Work in this area could
enrich current and future computing systems designed to aid
musical orchestration.

1. INTRODUCTION

Timbre is a complex and multidimensional attribute of sound,
whose definition has been largely discussed among the re-
search community, see [1] or [2] for examples. However, a
standard definition often cited in papers related to timbre is the
one proposed by the American National Standards Institute
[3]: “Timbre is that attribute of auditory sensation in terms of
which a listener can judge that two sounds similarly presented
and having the same loudness and pitch are dissimilar”. In
summary, timbre is defined as all the sound attributes, except
pitch, loudness, and duration, which allow us to distinguish
and recognize that two sounds are dissimilar [4]. However,
some research challenges this definition and suggests that tim-
bre, pitch, and loudness can interfere in the auditory sensation
[5, 6, 7]. Furthermore, several works have demonstrated the
importance of acoustic features in defining musical timbre
[8, 9, 10].

We are particularly interested in the perception of musical
timbre. Research into this field has identified various important
audio features to represent timbral perception [11, 12, 13,
14, 15]. However, timbre can also be described using verbal
descriptors [16, 4, 17]. For example, terms like brightness or
roughness are words from everyday language used to describe
perceived musical timbres. These terms can be more intuitive
for musicians, composers, and audio engineers, than their
acoustic correlates (e.g. spectral centroid, critical bands, etc.).

The system presented in this paper is built upon the existing
research about the correlation between acoustic features and
verbal description of timbre qualities. A similar approach
has been used in [18] and [19], but they utilized a visual
representation approach of timbre properties. We believe that
using verbal descriptors of timbral attributes can aid in making
the tool accessible to a broad audience by alleviating the need
to have expertise in acoustics or psychoacoustics.

The aim of this paper and the system presented within is to
propose an effective and direct application of the work done
on semantic description of timbre perception. The develop-
ment of such a system could aid in standardizing the metrics
for perceived responses of timbral qualities, and also enrich
computer-aided orchestration systems.

2. AUTOMATIC TIMBRE CLASSIFICATION
SYSTEM

This section introduces the technical aspects of the automatic
timbre classification system. First, we discuss the verbal de-
scriptors currently implemented in the system, with details of
their corresponding acoustic features. Then, we report on the
design of our classification algorithms developed to identify
the dominant timbral content within an audio file.

2.1. Verbal Descriptors and Acoustic Features

For our timbre classification system, we chose to represent tim-
bral qualities by using verbal descriptors. There are currently
five timbral attributes implemented in the presented system:
breathiness, brightness, dullness, roughness and warmth. Cor-
responding acoustic features for each attribute are detailed
below.

2.1.1. Breathiness

To identify the level of breathiness within an audio file, we
need to calculate the amplitude of the fundamental frequency
against the noise content, and also the spectral slope [20, 21].
The bigger the ratio between amplitude of the fundamental
and the noise content, the breathier the sound.

2.1.2. Brightness

The acoustic correlates for the attribute brightness are the
spectral centroid and the fundamental frequency [22, 23]. The
higher the spectral centroid, the brighter the sound.

2.1.3. Dullness

Similar to brightness, to identify the dullness of a sound we
need to calculate its spectral centroid. However, in this case,
a low spectral centroid value suggests that the sound is dull
[24].
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2.1.4. Roughness

To determine the roughness index of a sound, we need to
calculate the distance between adjacent partials in critical
bandwidths and also the energy above the 6th harmonic [25,
26, 8].

2.1.5. Warmth

To calculate the warmth of a sound, we need to calculate
its spectral centroid and retrieve the energy in its first three
harmonics [4, 27]. A low spectral centroid and a high energy
in the first three harmonics suggest that the sound is warm.

2.1.6. Acoustic Features Analysis

We have developed our acoustic features analysis algorithm
within the Matlab1 environment. We also utilized some func-
tions from the MIRtoolbox2 [28]. This toolbox proposes
several Matlab functions designed specifically for retrieving
and extracting various musical features from audio files.

Our system starts by computing the spectrum of the audio
file input by the user, using the mirspectrum function from
the MIRtoolbox. Then, the system calculates the acoustic
features for each attribute as described previously. Finally,
the analysis returns a value for each attribute, which are all
stored in a singular vector that will be used by the classification
algorithms, described in the following section.

2.2. Classification Algorithms

There is a significant amount of work about the perception
and description of musical timbre, upon which this work is
based. However, there are no universally agreed metrics for
classifying audio samples according to perceived responses
of timbre quality. Therefore, before the development of a
classification algorithm, a comparative scale for each timbral
attribute must be established.

2.2.1. Comparative Scale

We began with gathering data in order to establish the scale
of each timbral attribute. Therefore, we collected over 250
audio recordings of various orchestral pieces and split each
audio recording into 1, 2, 3 and 4 seconds long audio files. We
chose to go up to 4 seconds as it could represent a bar’s worth
of music, or it can correspond with the length of a computer-
aided orchestration system’s output. The acoustic features
analyzed are time-based and therefore longer durations could
omit important data and produce inaccurate indexes. As a
result, we analyzed over 236 000 audio files and collected
values for each timbral attribute.

We analyzed the dataset in order to retrieve various statical
values, such as minimum value, maximum value, standard
deviation, and the distribution of the values for each attribute.
This allowed us to establish a scale for each attribute and there-
fore develop a normalization algorithm in order to be able to

1http://www.mathworks.com/products/matlab/
2MIRtoolbox is available at https://goo.gl/d61EO0

Figure 1. Graph showing the results for the k-means clustering
performed on the 236 000 samples dataset.

compare the timbral values. The system continually calibrates
the statistical values as new audio files are analyzed in order
to adjust and improve the comparative scale. The dataset is
then used by the classification algorithms we developed in
Python 3.5.

2.2.2. K-Means Clustering

We first experimented with an unsupervised learning algo-
rithm to identify a classification model. We wanted to divide
the dataset into 5 parts—to represent the 5 timbral attributes.
Therefore, we decided to perform a k-means clustering using
Lloyd’s algorithm [29] on our dataset.

We used the KMeans function from the Scikit-Learn
package3, with a k-means++ initialization (which speeds
up convergence [30]). Each entry of the dataset was input as
a singular vector into the k-means algorithm. Results of the
clustering is shown in Figure 1.

2.2.3. Support Vector Machine

Following the experiment with k-means clustering, we opted to
implement a machine learning model usually utilized for data
classification and regression analysis: Support Vector Machine
(SVM) [31]. First, we needed to create a corpus training for
the SVM algorithm. Therefore, for each timbral attribute
we took and labeled the 250 highest index samples from the
normalized dataset. Thus, the corpus training contained 1250
labeled samples.

3http://scikit-learn.org/stable/index.html
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Figure 2. Representation of the normalized confusion matrix
for the SVM algorithm, with test size = 50% (625 training
samples, 625 testing samples).

We used the svm.SVC function from the Scikit-Learn
package. After performing the Scikit-Learn’s functions
for parameters’ tuning, we selected a rbf kernel for our SVM
algorithm, which performed a score of 0.976 (with 1.0 being
the maximum). The resulted confusion matrix is shown in
Figure 2.

3. RESULTS AND DISCUSSION

In [32], we reported on a pilot system that used the acoustic
analysis described in section 2.1. We also reported on an exper-
iment conducted with 20 participants to evaluate the accuracy
of the analysis. Results indicated a correlation between the
system’s timbre analysis and human perception, which led us
to develop the presented automatic classification system.

Timbral values being on different scales, the data gathering,
and audio analysis helped us to evaluate the distribution of
the values for each verbal descriptor, and therefore be able to
normalize the data in the range (0.0–1.0), which then can be
used in classification algorithms.

We performed a k-means algorithm on the 236 000 nor-
malized samples in order to divide the dataset in 5 clusters,
corresponding to the 5 timbral attributes. The result is shown
in Figure 1, using a Principal Component Analysis (PCA) al-
gorithm for visual representation. The k-means algorithm has
been able to produce 5 distinct clusters, however due to the
nature of the classification method the correspondent timbral
attributes remains unknown until evaluated and labeled by the
user.

To test the performances of the SVM algorithm, we di-
vided the corpus training set into different batches of learning

samples and testing samples. The SVM estimator with a rbf
kernel performed a success score of 0.976. Figure 2 shows
the normalized confusion matrix with a test size of 50%, in
this case 625 samples for learning and 625 samples for testing.
Although the SVM presents successful learning scores, it is
dependent on a previously created corpus training. While this
required action can be seen as a negative additional task, it
could enable the user to create their own training data, which
would represent their perceptual preferences.

4. CONCLUSION

In this paper, we have introduced the development of a com-
puting system capable of automatically identifying the timbral
qualities contained in orchestral audio samples. This system
is built upon the existing research about the relation between
acoustic features and verbal description of timbre qualities. It
currently integrates five verbal descriptors: breathiness, bright-
ness, dullness, roughness and warmth, introduced in section
2.1. Then, we detailed the creation of a comparative scale,
based on audio recordings analysis. This scale enabled us to
normalize data across the 5 timbral attributes, which is used
for the classification algorithms presented in section 2.2.

Both k-means and SVM algorithms performed successful
samples classification. However, a user action is still required,
whether afterward for clusters labeling for k-means, or before-
hand for corpus training’s creation for the SVM. Nevertheless,
these additional tasks can be used to calibrate the classification
algorithms to the user’s own musical perception, which could
offer a solution to the challenging variation in music percep-
tion between individuals. Such developments could enrich
computer-aided orchestration systems by harnessing percep-
tual aspects of polyphonic timbre within orchestral sound.
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